Additional course resources

SI sessions: Monday 11:00 – 11:50AM, BA 126 Tuesday 6:00 – 6:50PM, MAP 121 Wednesday, 11:00 – 11:50AM, BA 126 Thursday 6:00 – 6:50PM, MAP 121

Office hours: Tuesday Thursday 6-7 pm

- + additional
- A. Tuesday 10:30-noon
- B. Thursday 1:00-2:30 pm
- C. Extend office hours to 7:45 pm on both days
- D. Additional choice desired

TA office hours: see individual TA's syllabus

Note on Gauss's law: Field by a uniformly charged sphere [total charge: Q]

Find electric field everywhere

Demo

Last time: electric potential energy and electric potential

$$U = qV$$

U: electric potential energy (scalar)

q: charge

V: electric potential (scalar)

Interesting points:

- 1. Zero of electric potential energy and potential
- 2. Potential to be related to electric field

Problem 1: When a negative charge is released and moves under an influence of an electric field, it moves to a position of

- a. lower potential and lower potential energy.
- b. lower potential and higher potential energy.
- c. higher potential and lower potential energy.
- d. higher potential and higher potential energy.
- e. decreasing magnitude of the electric field.

Potential at R:
$$V(r) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r}$$

Addition of potential

Doc Cam

Acceleration of Charged Particles

Stanford Linear Accelerator Center: electrons and positrons up to 50 GeV

What is GeV? : giga electron volt

Giga = 10^9

Charge Q at x=0

$$V(x) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{x}$$

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{x^2} \hat{x} = -\frac{dV}{dx} \hat{x}$$

Gradient Discussion: Board

Problem 2: The electric field in a region of space is given by $E_x = (3.0x) \text{ N/C}$, $E_y = E_z = 0$, where x is in m. Points A and B are on the x axis at $x_A = 3.0$ m and $x_B = 5.0$ m. Determine the potential difference $V_B - V_A$.

- a. -24 V
- b. +24 V
- c. -18 V
- d. +30 V
- e. -6.0 V

Arcing Demo

Breakdown strength of air: 3 MV/m

Sharp points seems to be the source. Why?

Example:

Conducting Sphere

Radius: a

Total charge: Q

What about a non-traditional objects?

Conducting irregular shaped object

